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Abstract-In this note, we discuss the properties of model 
predictive control of nonlinear systems with input constraints. It 
shows that the prediction trajectory will not leave the terminal 
set once it enters into it, and the terminal state lies in a sublevel 
set of the terminal set if there exists a point of the prediction 
trajectory lying in the sublevel set. Furthermore, we show that 
the feasible set of the related optimization problem is a bounded 
set around the origin. 

I. INTRODUCTION 

Model predictive control (MPC) is an effective strategy 
to deal with multivariable control problems of constrained 
nonlinear systems. At each time instant, a control sequence 
is obtained by solving an optimization problem, where the 
current state of the plant is adopted as the initial state. Only the 
first control action in this sequence is applied to the plant. Both 
stability and robustness of MPC are well developed [1], [2], 
[ 3 ]  in the last three decades. Furthermore, applications ofMPC 
have spanned from process control [4] to nonholonomic mo­
bile robots [ 5], aerospace [6], and transportation networks [7]. 

Generally, MPC with guaranteed nominal stability needs to 
calculate a terminal cost, a terminal set, and a terminal control 
law off-line [1], [8]. The system state will be driven to the 
terminal set in finite time, and the terminal cost is an upper 
bound of the cost function for the system state in the terminal 
set. MPC of nonlinear systems with input constraints has some 
degree of inherent robustness with respect to persistent but 
bounded disturbances when the terminal control law and the 
terminal penalty matrix are chosen as the linear quadratic 
control law and the related Lyapunov matrix, respectively [9]. 

In this note, we will further discuss some properties of 
model predictive control of nonlinear systems with input 
constraints. It shows that the prediction trajectory will not 
leave the terminal set once it enters into it, and the terminal 
state will lie in a sublevel set of the terminal set if there 
exists a point of the prediction trajectory which lies in the 
set. Furthermore, we show that the feasible set of the related 
optimization problem is a bounded set. 

The remainder of the note is organized as follows. In 
Section II, MPC with guaranteed nominal stability is brief 
introduced. The properties of prediction trajectory, and the 
boundedness of the feasible set are discussed in Section III 

and Section IV, respectively. Section V concludes the paper 
with a short summary. 

Notation: For simplicity, we denote Ilxll� := xT Px, where 
P is a symmetric positive definite matrix. 

II. PRELIMINARIES 

Consider nonlinear continuous-time systems 

x(t) = f(x(t), u(t)), (1) 

where x( t) E IRnx denotes the system state and u( t) E IRnu 
the control input at time instant t. 

The system is subject to the control constraint 

u(t) E U, (2) 

where the set U c IRnu is a compact set which contains 0 E 
IRnu in its interior. 

Some standing assumptions are stated as follows: 
Assumption J: The system state x can be measured instan­

taneously. 
Assumption 2: f is twice continuously differentiable, and 

f(O,O) = O. Thus, 0 E IRnx is an equilibrium of the nominal 
system. 

Assumption 3: The system (1) has a unique solution for any 
initial condition Xo and any piecewise right-continuous input 
function uC) : [0, Tp] ---+ U, where Tp > 0 is a given constant. 
The optimization problem is formulated as follows: 

Problem J: 

where 

minimize J(x(t), uC)) 
u(·) 

subject to X(T,X(t)) = f(X(T,X(t)),U(T)), 
x(t, x(t)) = x(t), 
U(T) EU, T E [t,t +Tp], 
x(t + Tp, x(t)) E Xj, 

J(x(t), uC)) := Ilx(t + Tp, x(t))II� 

It+Tp 
+ t (1Ix(s, x(t))II� + Ilu(s)llk) ds, 

is the cost functional, Tp is the prediction horizon, Q E 
IRnx x nx and R E IRnu x nu are positive definite state and 
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input weighting matrices. The positive definite matrix P E 
IRnxxnx is the terminal penalty matrix, and E (x) : =  Ilxll� 
is the terminal penalty function. The terminal set Xf : =  
{x E IRnx I xT Px :s: o: } is a sublevel set of the terminal 
penalty function. The term xC x( t)) represents the predicted 
state trajectory starting from the initial state x(t) under the 
control u(-). 

The set Xf and the function E(x) are said to be the terminal 
region and the terminal penalty respectively, if there exists 
a regional control law u = K x such that the following 
conditions are satisfied [1], [8]: 

BO) Kx E U, for all x E Xf, 
Bl) E(x) satisfies inequality 

fJ�(x) 
f(x,Kx) +xT(Q +KTRK)x:s: O,\lx E Xf' uX 

(3)  

The terminal set Xf has the following properties [10]: 

• The point 0 E nnx is contained in the interior of Xf due 
to the positive definiteness of E(x) and 0: > 0, 

• In terms of (3), the terminal set Xf is invariant for the 
nonlinear system (1) with the local control u = K x. 

According to the principle of MPC, the optimization problem 
will be solved at the sampling instants tj = j6, where 6 is a 
sampling time and 0 < 6 :s: Tp, j E £:[0,00)' 
Assuming that the minimum is attained, the optimal solution 
to Problem 1 is given by the optimal input trajectory, 

U*(T,X(t)) : =  arg min J(x(t),U(T)), 
u(')EU 

x(t+Tp,x(t»EX f 

for all T E [t, t + Tp]. The applied control is U*(T,X(t)), for 
all T E [t, t + 6). 
The following stability results was established [8], [10]: 

Lemma 1: Suppose that 

( a) Assumptions 1-3 are satisfied, 
(b) there exist an asymptotically stable control law U = K x, 

a continuously differentiable, positive definite function 

E(x) that satisfies (3) for all x E Xf, 
( c) Problem 1 is feasible at the initial time instant t = O. 

Then, 

i) the open-loop optimal control problem is feasible for all 
time t 2 0, 

ii) the system under the MPC control law is nominally 
asymptotically stable 

III. PROPERTIES OF THE PREDICTION TRAJECTORY 

The next two lemmas show that along the prediction trajec­
tory, the terminal state is the closest point to the origin in the 
sense of Ilxllp, and the prediction trajectory will never leave 
the terminal set once it enters into it. 

Lemma 2: Let w E (0,1]. Define a subset of the terminal 
set Xf, 

Then, the terminal state is in the sublevel set Xi if there exists 
a point of the predicted trajectory which lies in the sublevel 
set Xi. 

x, 

x..__--. 

X, 

Fig. I. Fictitious prediction trajectory: enter into the terminal set, leave it 
for a while and come back in the end 

Proof Suppose that the initial state is x(to) and there ex­
ists x(t, x(to)) E Xi � Xf with t E [to, to + Tp], i.e. 

x(t,x(tO))TPx(t,x(to)) :s: wO:o The linear control law Kx 
guarantees that 

d��X) :s: _xT(Q + KTRK)x, \Ix E Xf' 
Integrating the above inequality from to to to + Tp, yields 

E(x(to + Tp, x(to))) - E(x(t, x(to))) 

That is, 

l to+Tp 
:s: - Ilx( T, x(to)) Ilb+KTRKdT. 

to 

E(x(t,x(to))) 2 E(x(to + Tp,x(to)))+ l to+Tp 

to 
Ilx( T, x(to)) Ilb+KT RK dT. 

Since the linear control law K x is a feasible solution to 
Problem 1, we have by the Principle of Optimality, 

E(x(t,x(to))) 2 to+Tp 
(1Ix*(T,X(to))llb 

Jto (4) 

+ Ilu*(T,X(to))llk d)T + E(x*(to + Tp, x(to))), 
where X*(T,X(tO)) and U*(T,X(tO)) denote the optimal pre­
dicted state and the optimal predicted control, respectively. 

Due to (4), and x(t,x(to)) E Xi � Xf, we have 

wo: 2E(x(t, x(to))) 
>E(x* (to + Tp, x(to))). 

Thus, x*(to + Tp, x(to)) E Xi. D 
Lemma 3: the prediction trajectory will never leave the 

terminal set Xf once it enters into it. 
Proof For the sake of contradiction, assume the prediction 
trajectory will leave the terminal set after it enters into it, 
see Fig. 1. 
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For simplicity, denote the time instants that the prediction 
trajectory go across the points A, Band C as t + tA, t + tB 
and t + te, respectively. 

Since the terminal control law is a feasible solution to the 
optimization problem for the states in the terminal set, similar 
to (4), we have 

E(x(t + te, x(t))) 2: E(x*(t + Tp, x(t)))+ 

It+Tp 
(1Ix*(T,X(t))II� + Ilu*(T,X(t))llhdT), t+tc 

and 

E(x(t + tB,X(t))) 2: E(x*(t + te, x(t)))+ 

It+tc 
(1Ix*(T,X(t))II� + Ilu*(T,X(t))llhdT). t+tB 

Thus, 

It+Tp 
J(x(t)) = t (1Ix*(T, x(t))II� + Ilu*(T, x(t))llh) dT 

+ E(x* (t + Tp, x(t))) 

It+tc ::; t (1Ix*(T, x(t))II� + Ilu*(T, x(t))llh) dT 

+ E(x*(t + te,x(t))) 

It+tB ::; t (1Ix*(T,X(t))IIQ + Ilu*(T,X(t))llh) dT 

+ E(x* (t + tB, x(t))). 

Since the points Band C are in the boundary of the set XI, 
E(x*(t + tB,X(t))) = E(x*(t + te, x(t))) 

=a. 
Thus, 

It+tc 
(1Ix*(T,X(t))II� + Ilu*(T,X(t))llh) dT::; 0, t+tB 

which contradicts with the fact that xT Qx > 0 for all x i= 0, 
and tB i= te. D 

IV. BOUNDEDNESS OF THE FEASIBLE SET 

Feasibility of the optimization problem means that there 
exists at least one input function u( T) E U, with T E [t, t+ Tp], 
such that the value of the objective function is finite and the 
terminal constraint is satisfied. 

Let r be a given constant. The set B (r) is convex and 
compact. Since fe·) is twice continuous differentiable on 
B(r) x U, and U is a compact set, [of lox] is bounded on 
B(r) x U. That is, Ilof loxll is bounded on B(r) xU. 

Lemma 4: Let v 2: 0 be a constant such that 

Proof Fixed u E U, x E B(r) and y E B(r). Defined e(s) := 
(l-s)x+syforO::; s::; 1. SinceB(r) is convex, Q(s) E B(r). 
Take z E lRxx such that Ilzll = 1 and 

zT[f(y,u) - f(x,u)] = Ilf(y,u) - f(x,u)ll· 

Set g(s) := zT f(Q(s), u). Since Q(s) is a real-valued function, 
which is continuous differentiable in an open interval that 
includes [0,1], we conclude by the mean value theorem that 
there is Sl E [0, 1 ] such that 

g(l) - g(O) = g(Sl) 

Evaluating 9 at S = 0 and S = 1, and calculating g( s) by 
using the chain rule, we obtain 

of zT[f(y, u) - f(x, u)] = zT ox (Q(sI), u)(y - x) 
of Ilf(y, u) - f(x, u)11 ::; Ilzll . II ox (Q(sI), u)11 . Ily - xii 

::; vlly - xii . 

D 
In order to show the property of XI, we will introduce a 

lemma which is a variant of Gronwall-Bellman Inequality [11]. 
Lemma 5: Let Ah : [a, b] -+ lR and f.Lh : [a, b] -+ lR 

be continuous and nonnegative. If a continuous function 

y : [a, b] -+ lR satisfies 

y(t) ::; Ah(t) + lb f.Lh(s)y(s)ds 

for a ::; t ::; b, then in the same interval 

y(t) ::; Ah(t) + lb Ah(S)f.Lh(S) exp [-it 
f.Lh(T)dT] ds 

Proof let z(t) = ftb f.Lh(s)y(s)ds, and v(t) = z(t) + Ah(t) -
y(t) 2: o. Then, z is differentiable and 

This is a scalar linear state equation with the transition function 

<I>(t,s) =exp [-it 
f.Lh(T)dT] . 

Since z(b) = 0, we have 

z(t) = lb <I>(t, S)[ f.Lh(S)Ah(S) - f.Lh(s)v(s)]ds. 

The term 

is nonnegative. Therefore, 

z(t) ::; lb <I>(t, S)f.Lh(S)Ah(S)ds 
on B(r) x U. Then, 

Ilf(y, u) - f(x, u)11 ::; vlly - xii· (5) = lb e- J; f1h(r)dr f.Lh(S)Ah(S)ds 
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Since y(t) :::; Ah(t) + z(t), 

y(t) :::; Ah(t) + lb e- J,' "dr)dr f..Lh(S)Ah(S)ds. 

We can now show the following crucial property of Xr. 
Lemma 6: The set Xr is bounded. 

D 

Proof Let Xo E Xr be an initial state of the nominal 
system (1). For simplicity, denote the corresponding control 
trajectory as U (T ) , T E [0, Tp]. 

Denote that x(t, xo), t E [0, Tp], is a prediction trajectory of 

x = f(x, u), x(to) = Xo 

with the fixed u E U. Thus, 

x(t,xo) = Xo + it 
f(x(s),u(s))ds 

Denote x(Tp) : =  x(Tp, xo). The trajectory x(t, xo), t E 
[0, Tp], can be rewritten as 

Then, 

x(t,xo) =Xo + iTp 
f(x(s,xo),u(s))ds 

- lTp 
f(x(s, xo), u(s))ds 

=x(Tp) - lTp 
f(x(s), u(s))ds 

/Tp 
x(t,xo) - x(Tp) = - Jt 

f(x(s,xo),u(s))ds 

= lTp 
[-f(x(s, xo), u(s)) + f(x(Tp), u(s)) 

That is, 

Let 

- f(x(Tp), u(s))]ds 

Ilx(t,xo) - x(Tp)11 

l
Tp 

:::; 
t Ilf(x(s,xo),u(s)) - f(x(Tp),u(s))ll ds 

l
Tp 

+ 
t 

Ilf(x(Tp), u(s))ll ds. 

ho : =  Ilf(x(Tp),u(s))II· 
Since for fixed u(s) E U, Ilf(x(s, xo), u(s)) 
f(x(Tp),u(s))11 :::; vllx(s,xo) - x(Tp)ll , we obtain 

Ilx(t, xo)-x(Tp)11 :::; lTp 
vllx(s, xo)-x(Tp)ll ds+ho(Tp-t). 

Application of the Lemma 5 to the function x(t, xo) - x(Tp) 
results in 

Ilx(t, xo)-x(Tp)11 :::; lTp 
vho(Tp-s)e-v(t-s)ds+ho(Tp-t). 

Integrating the right-hand side, we obtain 

Ilx(t, xo) - x(Tp) II :::; ho (evTp - evt) . 
v 

Since Xo = x(O,xo) and x(to + Tp,x(to)) E Xj, it directly 
follows 

Denote 

Ilxoll :::;llx(Tp)11 + Ilx(O, xo) - x(Tp)11 

:::; a 
+ ho

(eVTp_1). Amin(P) v 

h : =  max Ilf(x,u)ll . 
uEU 

xEXj 

Since x(Tp) E Xj and u(s) E U, and ho :::; h, we have 

a h T Ilxoll :::; Amin(P) + ;(eV P - 1). 

This complete the proof. 

V. CONCLUSION 

D 

In this note, we showed that the properties of model 
predictive control of nonlinear systems with input constraints, 
which include (1) the terminal state lies in a sublevel set of the 
terminal set if there exists a point of the prediction trajectory 
lying in the sublevel set, (2) the prediction trajectory will not 
leave the terminal set once it enters into the terminal set, and 
(3) the feasible set of the corresponding optimization problem 
is a bounded set. 

ACKNOWLEDGMENT 

Shuyou Yu, Ting Qu and Hong Chen gratefully acknowl­
edge support by the 973 Program (No. 2012CB821202), the 
National Nature Science Foundation of China (No. 61034001), 
and the Program for Changjiang Scholars and Innovative 
Research Team in University (No. IRTl ° 17). 

REFERENCES 

[ I] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, "Con­
strained model predictive control: stability and optimality," Automatica. 
vol. 36, no. 6, pp. 789-814, 2000. 

[2] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and 
Design. Madison, Wisconsin: Nob Hill Publishing. 2009. 

[3] L. Griine and J. Pannek, Nonlinear model predictive control: theOlyand 
algorithm, ser. Communications and Control Engineering. London: 
Springer-Verlag, 2010. 

[4] S. J. Qin and T. A. Badgwell, "A survey of industrial model predictive 
control technology." Control Engineering Practice. vol. 11, no. 7. pp. 
733-764, 2003. 

[5] D. Gu and H. S. Hu, "Receding horizon tracking control of wheel mobile 
robots." iEEE Trans. Contr. Syst. Technology, vol. 14. no. 4, pp. 743-
749,2006. 

[6] A. ladbabaie and 1. Hauser, "Control of a thrust-vectored Hying wing: 
a receding horizon-LPV approach," into J Robust Nonlinear Control, 
vol. 12, pp. 869-896, 2002. 

[7] R. R. Negenborn. B. D. Schutter, and H. Hellendoorn, "Multi-agent 
model predictive control for transportation networks: Serial versus 
parallel schemes," in the 12th lFAC Symposium on information Control 
Problems. Saint-Etienne. France: IFAC, 2006, pp. 339-344. 

[8] H. Chen and F. Allgower, "A quasi-infinite horizon nonlinear model 
predictive control scheme with guaranteed stability," Automatica, vol. 34, 
no. 10, pp. 1205-1217, 1998. 

[9] S.-Y. Yu, M. Reble, H. Chen, and F. Allgower, "Inherent robustness 
properties of quasi-infinite horizon NMPC," in Proc. lFAC World 
Congress, Milano, Italy, 2011, pp. 179-184. 

[10] H. Chen, "Stability and robustness considerations in nonlinear model 
predictive control," Ph.D. Thesis, University of Stuttgart, Germany, 
1997. 

[ I I] H. K. Khalil, Nonlinear Systems (third edition). New York: Prentice 
Hall, 2002. 

1353 


